
Where would we use Optimization?

● Engineering

● Architecture

● Nutrition

● Electrical circuits

● Economics

● Transportation

● Etc.



But also …

● Optimization is also applied in:

– Protein folding

– System identification

– Financial market forecasting (options pricing)

– Logistics (traveling salesman problem),

route planning, operations research 

– Controller design

– Spacecraft trajectory planning

http://www.postech.ac.kr/life/pe/index2.html


Optimization popularity

● Increasing availability of numerical modeling techniques

● Increasing availability of cheap computer power

● Increased competition, global markets

● Better and more powerful optimization techniques

● Increasingly expensive production processes 

(trial-and-error approach too expensive)

● More engineers having optimization knowledge

Increasingly popular:



Solving optimization problems

● Optimization problems are typically solved using an 

iterative algorithm:
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Curse of dimensionality

Looks complicated … why not just sample the design 

space, and take the best one?

● Consider problem with n design variables

● Sample each variable with m samples

● Number of computations required: mn

Take 1 second per computation, 

10 variables, 10 samples: 

total time 317 years!



Parallel computing

● Still, for large problems, 

optimization requires lots 

of computing power

● Parallel computing



Optimization in the design process

Conventional design process:

Collect data to describe 

the system

Estimate initial design

Analyze the system

Check performance 

criteria

Is design satisfactory?

Change design based 

on experience / 

heuristics / wild guesses

Done

Optimization-based design process:

Collect data to describe 

the system

Estimate initial design

Analyze the system

Check the constraints

Does the design satisfy 

convergence criteria?

Change the design 

using an optimization 

method

Done

Identify:

1. Design variables

2. Objective function

3. Constraints



What makes a design 

optimization problem interesting?

● Good design optimization problems often show a 

conflict of interest / contradicting requirements:

– Aircraft wing & F1 car: stiffness vs. weight

– Oil bottle: stiffness / buckling load vs. material usage

● Otherwise the problem could be trivial!



A Standard Optimization Model

Optimization concerns the minimization or maximization of  

functions:

 Standard Optimization Problem:

min max ( )or f x
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Equality Constraints
Subject to:
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 f x
is the objective function, which measure and evaluate the performance of 

a system. In a standard problem, we are minimizing the function. For 

maximization problems, it is equivalent to minimization of –f(x).

where:

x is a column vector of design variables, which can

affect the performance of the system.

Objective function:

max ( ) min [ ( )]f x f x 



Example of an optimization problem

  1 2 3min f x x x x 

2

1 22 0x x 

1 2 3

1 2 3

2 2 0

2 2 72

x x x

x x x

   

  

1 2 30 , , 30x x x 

Linear inequalities

Side Constraints

Subject to:

2 3

1 25 3 0x x 

1 2

2 3

5 2 0

8 4 5

x x

x x

  

 

Linear equalities

Nonlinear equalities

Nonlinear inequalities

Objective Function:



Optimization Category



Optimization classification

Single Variable Vs. Multiple Variables

● If there is only one variable, the optimization is one-dimensional. 

Dynamic Vs. Static

● Dynamic optimization means that the output is a function of time, while static 

means that the output is independent of time.

Discrete Vs. Continuous 

● Discrete variables have only a finite number of possible values, whereas 

continuous variables have an infinite number of possible values.



Try-and-error Vs. Function

● Trial-and-error optimization refers to the process of adjusting variables that affect 

the output without knowing much about the process that produces the output.

● In contrast, a mathematical formula describes the objective function in function 

optimization.

● Experimentalists prefer the try-and-error, while theoreticians love the theoretical 

and mathematical approach.



Random Search Vs. Minimum seekers

● Some algorithms try to minimize the cost by starting from an initial set of 

variable values. These minimum seekers easily get stuck in local minima but 

tend to be fast. They are the traditional optimization algorithms and are 

generally based on calculus methods. Moving from one variable set to 

another is based on some determinant sequence of steps. 

● On the other hand, random methods use some probabilistic calculations to 

find variable sets. They tend to be slower but have greater success at finding 

the global minimum.

Minimum Seeking Algorithms: Classic way

Random Search Algorithms: New way 



Constraint Vs. Unconstraint

● Variables often have limits or constraints. Constrained optimization 

incorporates variable equalities and inequalities into the cost function.

● Constraints can be hard (must be satisfied) or soft (is desirable to satisfy).

Example: In your course schedule a hard constraint is that no classes 

overlap. A soft constraint is that no class be before 10 AM. 

● Constraints can be explicit (stated in the problem) or implicit (obvious to the 

problem).



Single objective vs multi-objective

● Minimize f(x)

s.t.: g(x)  0, h(x) = 0

● Input from designer required! Popular approach: 

replace by weighted sum:

Vector!

( ) ( )i i

i

F w fx x

● Optimum, clearly, depends on choice of weights

● Pareto optimal point: “no other feasible point exists that 

has a smaller fi without having a larger fj”



Multi-objective problems (cont.)

● Examples of multi-objective problems:

– Design of a structure for 

 Minimal weight and

 Minimal stresses

– Design of reduction gear unit for

 Minimal volume

 Maximal fatigue life

– Design of a truck for

 Minimal fuel consumption @ 80 km/h

 Minimal acceleration time for 0 – 40 km/h

 Minimal acceleration time for 40 – 90 km/h



Types of Solutions

● A solution to an optimization problem specifies the values of the decision 
variables, and therefore also the value of the objective function.

● A feasible solution satisfies all constraints.

● An optimal solution is feasible and provides the best objective function 
value.

● A near-optimal solution is feasible and provides a superior objective 
function value, but not necessarily the best.

● Near-optimal solution~=Local optimal solution



Simple Vs. Hard problem

Simple

• Few decision variables

• Differentiable

• Uni-modal

• Objective easy to calculate

• No or light constraints

• Feasibility easy to determine

• Single objective

• deterministic

Hard

• Many decision variables

• Discontinuous, combinatorial

• Multi modal

• Objective difficult to calculate

• Severely constraints

• Feasibility difficult to determine

• Multiple objectives

• Stochastic



Structural optimization

● Structural optimization = optimization techniques 

applied to structures

● Different categories:

– Sizing optimization

– Shape optimization

– Topology optimization
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Sizing Optimization



Shape optimization 

Yamaha R1



Topology optimization



Topology optimization



Practical Examples: Submarines



Practical Example: Airbus A380

● Wing stiffening ribs 

of Airbus A380:

● Objective: reduce weight

● Constraints: stress, buckling

Leading 

edge ribs



Airbus A380 example (cont.)

● Topology and shape optimization



Airbus A380 example (cont.)

● Topology optimization:

● Sizing / shape optimization:



Airbus A380 example (cont.)

● Result: 500 kg weight savings!



Other examples

● Jaguar F1 FRC front wing:

reduce weight

constraints on

max. displacements

5% weight saved



Other examples (cont.)

● Design optimization of packaging products

● Objective: minimize 

material used

● Constraints: 

stress, buckling

● Result: 20% saved

http://www.tudelft.nl/


Structural optimization examples

● Typical objective function: weight

● Typical constraint: maximum stress, maximum 

displacement
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Aspirin pill design

● Proper bounds are necessary to avoid unrealistic 

solutions:

– Example: aspirin pill design

Objective: minimize dissolving time

= maximize surface area

(fixed volume)

1

22

2

2

,





hr

rhr
hr





s.t.

maxr
h



Aspirin pill design (cont.)

● Volume equality constraint can be substituted, yielding:
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Using Optimization in Mathematics



Einstein’s advice

“Everything 

should be 

made as 

simple as 

possible, but 

not simpler”

● Model simplification is important for optimization! 



What are the metaheuristics?

Metaheuristics

● Computational methods

● Iteratively improve 

● Inspired by nature, real life events, etc

● No assumption of problem being solved

● Derivative free method



Rule 1: Collision Avoidance

Avoid Collision with neighboring birds



Rule 2: Velocity Matching 

Match the velocity of neighboring birds



Rule 3: Flock (Swarm) Centering

Stay near neighboring birds



Ideal Optimizer

An Ideal Optimization Method

1. Guarantee finding global optimum point

2. No need any initial or user parameters

3. Fast convergence

4. Simple concept (simple programing)

5. High solution stability 

6. Great solution quality

7. Independent to the nature of a given problem

8. Independent to the number of D.Vs

Simultaneously



When to Use Metaheuristic algorithms?!

● When space to be searched is large.

● When the “best” solution is not necessarily required.

● Approach to solving a problem not well-understood.

● Problems with many parameters that need to be simultaneously optimized.

● Problems that are difficult to describe mathematically.



Evolutionary Algorithms (EAs) as problem solver: 

Goldberg’s 1989 view
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Two Important Characteristics of Metaheuristics

 Diversification – makes sure the algorithm explores the search

space globally

 Intensification – intends to search locally and more intensively

 A fine balance between these two components is very important

to the overall efficiency and performance of an algorithm

 Furthermore, needs Survival of the Fittest
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Searching Space Final Solution Using Algorithm 1
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Good Exploration Capability

Bad Exploitation Capability

Bad Exploration Capability

Good Exploitation Capability

Good Exploration Capability

Good Exploitation Capability

Objective : Maximization of Function Value



Heriot-Watt Universtiy

http://www.streamsim.com/sites/default/files/explorationvsexploitation.png

Exploration vs. Exploitation

Miner Conqueror

Adventurer



Meta-heuristic Algorithms

Holland (1975) 

Genetic 
Algorithm

Glover (1977) 

Tabu Search

Kirkpatrick et 
al. (1983)
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Annealing

Dorigo (1992)
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Optimization
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(1995)

Particle 
Swarm 

Optimization

Storn and 
Price (1996)

Differential 
Evolution
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Meta-heuristic Algorithms

Geem and Kim 
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Nakrani and 
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Yang (2007)
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Yang and Deb 
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Yang (2010) 
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Eskandar et al. 
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Water Cycle 
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Mine Blast 
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2000s 2013



Water cycle algorithm



Water Cycle Algorithm: Basic Concept

Concepts: Water cycle process (Hydrologic cycle)

Sea

Stream

River



Order of streams

Sea



Steps of Water Cycle Process

1. Precipitation

2. Surface Runoff

3. Infiltration

4. Transpiration

5. Evaporation and Condensation



Schematic view of Water Cycle Process

Water Cycle 

(hydrologic cycle)



Water Cycle Algorithm: Formulations
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Water Cycle Algorithm: Formulations

In order to designate streams to rivers and sea which depends on the intensity of 

the flow:

New positions for streams and rivers may be given as:

1
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WCA: Evaporation Condition

After satisfying evaporation condition, the raining process must be applied:

max 1,2,3,..., 1i i

Sea River SRIf X X d i N

Evaporation and Raining Process

End
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1 max
max max

Max
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i i d
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Processes of the WCA



Analogy

Nature Water Cycle Algorithm

Precipitation Initial Population

Stream(s) Individual(s) of population

River(s)
Second best solution (a number of best 

solution)

Sea Best solution (optimum solution)

Surface Runoff
Moving streams to rivers, and rivers to 

sea

Evaporation Evaporation condition

Water cycle process Iteration



Flowchart of the WCA



WCA: Pseudo Code



How do you know if they are 

converged?

● You don’t

● Metaheuristics are not a “black-box” optimizer for any 

function

● You can gain confidence by running several 

optimizations with different starting parameters, 

different algorithm options, and different parameter 

ranges.
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Are long runs beneficial?!

• Answer: 

- it depends how much you want the last bit of progress.

- it may be better to do more shorter runs.



T: time needed to reach level F after random initialization  
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F: fitness after smart initializationF

Is it worth expending effort on smart 

initialization?

• Answer : it depends: 

- possibly, if good solutions/methods exist.

- care is needed, see chapter on hybridization



Meta-heuristic Algorithms

 Nature-inspired vs. non-nature inspired

 Population-based vs. single point search

 One vs. various neighborhood structures

 Memory usage vs. memory-less methods



Meta-heuristic Algorithms

Metaheuristics
Population-based 

vs. single point search
Using Memory

Generating 

Initial Solution

Number of 

Neighbor 

Solutions

GAs Population-based Memory less Random One neighbor

ACO
Population 

& Single based

Using memory to store 

amount of pheromones

Random 

/ Local search

n neighbor 

solutions

SA Single based Memory less Random One neighbor

TS Single based

Short term (tabu lists), 

mid term and

long term memory

Local search
n neighbor 

solutions

HS

Population-based 

algorithm 

(Harmony Memory)

Using memory Random One neighbor



Metaheuristic Diagram

WCA

HS



Thank you for your kind attentions


