Where would we use Optimization?

Engineering
Architecture
Nutrition
Electrical circuits
Economics
Transportation

Etc.



But also ...

e Optimization is also applied in:

— Protein folding

— System identification
— Financial market forecasting (options pricing)

— Logistics (traveling salesman problem),
route planning, operations research

— Controller design

— Spacecraft trajectory planning


http://www.postech.ac.kr/life/pe/index2.html

Optimization popularity

Increasingly popular:

¢ Increasing availability of numerical modeling techniques
e Increasing availability of cheap computer power

e Increased competition, global markets

e Better and more powerful optimization techniques

e Increasingly expensive production processes
(trial-and-error approach too expensive)

e More engineers having optimization knowledge



Solving optimization problems

e Optimization problems are typically solved using an
iterative algorithm:

Constants

Design
variables
X




Curse of dimensionality

Looks complicated ... why not just sample the design
space, and take the best one?

e Consider problem with n design variables
e Sample each variable with m samples

e Number of computations required: m"

Take 1 second per computation,
10 variables, 10 samples:
total time 317 years!




Parallel computing

e Still, for large problems,
optimization requires lots
of computing power

e Parallel computing




Optimization in the design process

Optimization-based design process:

|dentify: Collect data to describe

1. Design variables j the system

2. Objective function !

3. Constraints Estimate initial design
v

A 4

Analyze the system

A 4

Check the constraints

'

Does the design satisfy
convergence criteria? L~ Done
v
Change the design
using an optimization
method




What makes a design
optimization problem interesting?

e Good design optimization problems often show a
conflict of interest / contradicting requirements:

— Aircraft wing & F1 car: stiffness vs. weight

— Ol bottle: stiffness / buckling load vs. material usage

e Otherwise the problem could be trivial!



A Standard Optimization Model

Optimization concerns the minimization or maximization of
functions:

» Standard Optimization Problem:
Objective function: mMIn or max f(X)

Subject to: _
h (X) =0 1=1..1 Equality Constraints

g, X) <0 J=1..m Inequality Constraints

X", <X <X, k=1...,N side constraints
where:

IS the objective function, which measure and evaluate the performance of
f (X) a system. In a standard problem, we are minimizing the function. For
maximization problems, it is equivalent to minimization of —f(x).

X IS a column vector of design variables, which can
affect the performance of the system.

max f(x)=min [-f(X)]



Example of an optimization problem

Objective Function:
min f (X) =—%X,X,

Subject to:

| Nonlinear inequalities

Nonlinear equalities

X, + 2X, + 2%, < 72 Linear inequalities

—5x, —2x, =0 / Linear equalities

8X, +4X, =5 0/ Side Constraints
0< X, X,, %X <3




Optimization Category

Single Vanable

Minimum

secking Dynamic
A Multiple Variables A

Random < > Static
OPTIMISATION

Function < 7 > Constrained
> Discrete ’

Unconstrained

Continuous

Tnal and Error
exclusive




Optimization classification

Single Variable Vs. Multiple Variables

e If there is only one variable, the optimization is one-dimensional.

Dynamic Vs. Static

e Dynamic optimization means that the output is a function of time, while static
means that the output is independent of time.

Discrete Vs. Continuous

e Discrete variables have only a finite number of possible values, whereas
continuous variables have an infinite number of possible values.



Try-and-error Vs. Function

e Trial-and-error optimization refers to the process of adjusting variables that affect
the output without knowing much about the process that produces the output.

e In contrast, a mathematical formula describes the objective function in function
optimization.

e Experimentalists prefer the try-and-error, while theoreticians love the theoretical
and mathematical approach.



Random Search Vs. Minimum seekers

e Some algorithms try to minimize the cost by starting from an initial set of
variable values. These minimum seekers easily get stuck in local minima but
tend to be fast. They are the traditional optimization algorithms and are
generally based on calculus methods. Moving from one variable set to
another is based on some determinant sequence of steps.

e On the other hand, random methods use some probabilistic calculations to
find variable sets. They tend to be slower but have greater success at finding
the global minimum.

Minimum Seeking Algorithms: Classic way

Random Search Algorithms: New way



Constraint Vs. Unconstraint

e Variables often have limits or constraints. Constrained optimization
Incorporates variable equalities and inequalities into the cost function.

e Constraints can be hard (must be satisfied) or soft (is desirable to satisfy).

Example: In your course schedule a hard constraint is that no classes
overlap. A soft constraint is that no class be before 10 AM.

e Constraints can be explicit (stated in the problem) or implicit (obvious to the
problem).



Single objective vs multi-objective

e Minimize f(X) < Vector!
s.t..gX)<0,h(x)=0

e Input from designer required! Popular approach:
replace by weighted sum:

F(x) = Z\Ni fi (X)
e Optimum, clearly, depends on choice of weights

e Pareto optimal point: "no other feasible point exists that
has a smaller f; without having a larger f;’



Multi-objective problems (cont.)

e Examples of multi-objective problems:

— Design of a structure for

= Minimal weight and

= Minimal stresses

— Design of reduction gear unit for =~

= Minimal volume

= Maximal fatigue life

— Design of a truck for
= Minimal fuel consumption @ 80 km/h
= Minimal acceleration time for O — 40 km/h

= Minimal acceleration time for 40 — 90 km/h



Types of Solutions

A solution to an optimization problem specifies the values of the decision
variables, and therefore also the value of the objective function.

A feasible solution satisfies all constraints.

An optimal solution is feasible and provides the best objective function
value.

A near-optimal solution is feasible and provides a superior objective
function value, but not necessarily the best.

Near-optimal solution~=Local optimal solution



Simple Vs. Hard problem

Hard

« Many decision variables

« Discontinuous, combinatorial
e Multi modal

* Objective difficult to calculate

« Severely constraints

» Feasibility difficult to determine
« Multiple objectives

« Stochastic

Simple

Few decision variables
Differentiable

Uni-modal

Objective easy to calculate
No or light constraints
Feasibility easy to determine
Single objective
deterministic



Structural optimization

e Structural optimization = optimization technigues
applied to structures

e Different categories:

— Sizing optimization
— Shape optimization

— Topology optimization




Sizing Optimization
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Shape optimization

Yamaha R1




Topology optimization

Bef_ore... After!




CHLLER

R AALED

e e L

A Yok
H et

Lo

EEEaas L LI ULy,
<y L

o

kel gl b 1

__:Z:?Eﬁ(';?f.h

Topology optimization

'
Altair Engineering



Practical Examples: Submarines
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Practical Example: Airbus A380

e Wing stiffening ribs
of Airbus A380:

%2 AIRBUS

e Objective: reduce weight

e Constraints: stress, buckling
Leading

t edge ribs
.

Altair Engineering




Airbus A380 example (cont.)

e Topology

(N

Altair Engineering

and shape optimization
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Geometry Extraction
Size and Shape Model Building

Altair® OptiStruct®
Topology Optimization
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Topology Model Building
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bus A380 example (cont.)
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Airbus A380 example (cont.)

e Result: 500 kg weight savings!

/ HINGE HIB 1
= / DRIVE FIB 1 INBOARD
‘
/ DRIVE RIB 1 OUTBOARD

DRVE RIB 2 INBOARD

DRIVE RIB 2 OUTBOARD

HNGE RIB 2

INTERMEDIATE RIB
HINGE RIB 3

DRIVE RIB 3 INBOARD
DRIVE RIB 3 OUTBOUARD

DRIVE FIB 4INBOARD ﬂfy

DRIVE RIB 4OUTBOARD il
Altair Engineering HNGERE4 —



Other examples

e Jaguar F1 FRC front wing:

reduce weight

constraints on
max. displacements

DV13-15

/ Bundle 1
= s
—Bwied L DV1-3
— Bundle 3
5
\ Bundle 2 DV4'6
Bundle 1

O Non-designable bundles [ Designable bundles (design variables)

DV7-9 DV10-12

Baseline configuration Optimized lay-up

5% weight saved ] A%

Altair Engineering R& € 1 NG



Other examples (cont.)

Design optimization of packaging products

>

Objective: minimize
material used

Constraints:
stress, buckling

Result: 20% saved

area of wzll thickness variation

%
TUDelft



http://www.tudelft.nl/

Structural optimization examples

e Typical objective function: weight

C_W

= Note the scaling!
W (X,)

e Typical constraint: maximum stress, maximum
displacement

g — Gmax (X) —13 O g — Gmax (X) _Gallowed < O
O

allowed

Scaled VS. Unscaled




Aspirin pill design

e Proper bounds are necessary to avoid unrealistic
solutions:

— Example: aspirin pill design
Objective: minimize dissolving time
= maximize surface area
(fixed volume)

h
Vgl = max 27r % + 27rh

/

s.t. ar‘h=1



Aspirin pill design (cont.)

e Volume equality constraint can be substituted, yielding:

2
h:—2 — MaxXx 27Z'r2-|-—
V48 r r

el

500 ¢
450 A \ /
400 A

0 4




Using Optimization in Mathematics

r . 1 x=0
V' 42y+5 [ ytdt = 0 I{D,y{[}}=[} (36)

where the solution interval varies from 0 to 1. Using the mathe-
matical approach, the exact solution ~f the cancidarad WD e
obtained as follows: 0.3

—=—Exact
---PSO-UW | |
« WCA-UW
-a - WCA-LSW

035 ¢

y{x}=%€"" sin{2x).
This ODE problem is solved using differ T
approximate solution is represented . 0.15 |
terms for Fourier series (NT) is cho
variables). The best approximate solu
square weight (LSW) function using the
follows:

Yappx(Xx) = (1.9996E - 02)+ (1.1002E - 0

+(3.8363E—-02)sin(x)—(7.99 -0.05 | ._ e . ]

+(1.1888E—01)sin(2x) — (3.€ o : , l : l ,
. 0 0.5 1 1.5 2 25 3 3.5
+(4.7980E — 02)sin(3x) — (4.2 .

+(6.5364E-02 }5fn{4x} +(2.7  Fig. 3. Comparison of the best solutions between PSO and WCA optimizers having
two different weight functions for the test problem 1.

+(4.9891E — Dz}Sfﬂ{SX}—F (2.0 02 —ve uayoa
—(4.1469E — 03)sin(6x) (38)

01 F

f(x)




Einstein’s advice

“Everything
should be
made as

simple as
possible, but
not simpler”

e Model simplification is important for optimization!



What are the metaheuristics?

Metaheuristics

e Computational methods
e lteratively improve
e Inspired by nature, real life events, etc

e No assumption of problem being solved

e Derivative free method




Rule 1: Collision Avoidance
Avoid Collision with neighboring birds

A\




Rule 2: Velocity Matching

Match the velocity of neighboring birds

A




Rule 3: Flock (Swarm) Centering

Stay near neighboring birds




ldeal Optimizer

An ldeal Optimization Method

1.

2.

Guarantee finding global optimum point

No need any initial or user parameters

. Fast convergence

. Simple concept (simple programing)

. High solution stability

. Great solution quality

. Independent to the nature of a given problem

. Independent to the number of D.Vs

-

Simultaneously



When to Use Metaheuristic algorithms?!

When space to be searched is large.

When the “best” solution is not necessarily required.

Approach to solving a problem not well-understood.

Problems with many parameters that need to be simultaneously optimized.

Problems that are difficult to describe mathematically.



Performance of methods on problems

Evolutionary Algorithms (EAS) as problem solver:
Goldberg’s 1989 view

>

Special, problem tailored method

Evolutionary algorithm

-----
'''''''''''''
--------------
--------

------
....................
------------
..............
-----------

Scale of “all” problems



Michalewicz’ 1996 view

>

EA?2

S—- \< EA 3

EA 1 P LN

Performance of methods on problems

Scale of “all” problems



Two Important Characteristics of Metaheuristics

@® Diversification — makes sure the algorithm explores the search
space globally

@ Intensification — intends to search locally and more intensively

® A fine balance between these two components is very important
to the overall efficiency and performance of an algorithm

® Furthermore, needs Survival of the Fittest



Exploration vs. Exploitation

Objective : Maximization of Function Value

Objective function value

Objective function value

Searching Space

Variable set

Final Solution Using Algorithm 2

Bad Exploration Capability
Good Exploitation Capability

Variable set

Objective function value

Objective function value

Final Solution Using Algorithm 1

Good Exploration Capability
Bad Exploitation Capability

Variable set

Final Solution Using Algorithm 3

Good Exploration Capability
Good Exploitation Capability

Variable set



Exploration vs. Exploitation iy
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Meta-heuristic Algorithms

® Types of Algorithms - Initial Stage

Kennedy and
Eberhart Storn and Geem and Kim
(1995) Price (1996) (2001)

Particle Differential Harmony
Swarm Evolution Search
Optimization

Kirkpatrick et
Glover (1977) al. (1983)

Tabu Search Simulated
Annealing

Holland (1975)

Genetic
Algorithm

Dorigo (1992)

Ant Colony
Optimization

1970s 2001


http://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=8n6Gqz_ya0whaM&tbnid=QQrBWjW0gRc18M:&ved=0CAUQjRw&url=http://www.quickiwiki.com/en/Ant_colony_optimization&ei=LleMUoTMI-XOiAeX_YHYBQ&bvm=bv.56753253,d.aGc&psig=AFQjCNHf8FlHpVYzuN68fhLM5ahfBtGEtA&ust=1385015345222282

WEERICIENINOIGIUINS o Types of Algorithms - Recent

Eskandar et al. Sadollah et al.

Geem and Kim Nakrani and

(2001) Tovey (2004) Yar;‘? (2]‘?07) (Yz%gg)agg;gg Yang (2010) (2012) (2012)
ire : ;
Harmony Honeybee Algoritﬁ/m Search Bat Algorithm | water Cycle Mine Blast

Search Algorithm Algorithm Algorithm

2000s 2013
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Water Cycle Algorithm: Basic Concept

Concepts: Water cycle process (Hydrologic cycle)




Order of streams




Steps of Water Cycle Process
1. Precipitation &

2. Surface Runoff <£

3. Infiltration x

4. Transpiration x

5. Evaporation and Condensation Q




Schematic view of Water Cycle Process

Y
Condensation

L 4
*

Water Cycle
(hydrologic cycle)

Evaporation

Percolation



Water Cycle Algorithm: Formulations

N

N =N

Streams

Total Population =

Pop

= Number of Rivers +

NSR

Sea

Population of Streams=

Sea
River,
River,
River,
Stream,
Stream,
Stream,

Stream,,

pop

_Streaml |
Stream,
Stream,

NSstreams J

Stream

Cost, = f(Stream) = f(x,x ,X ,...x ) 1=123,..,N

X]_N Streams

2 2 2
X3

N Streams
X2

N Streams
X3

N Streams
X N




Water Cycle Algorithm: Formulations

In order to designate streams to rivers and sea which depends on the intensity of
the flow:

Cost
NSn = I'OUﬂd{ Nsr —| % NStreams} , N :1’2""’ NSR
> Cost,
i=1
New positions for streams and rivers may be given as: 1<C<2
=i - - ..
Xgream — Xétream +rand xC x (Xll?iver o Xétream)
=i - - -
Xgream — Xétream + rand X C X (Xéea o Xétream)
7 i+l VA VA VA
XRiver — XRiver +rand xC x (XSea o XRiver)

@



A

WCA: Evaporation Condition o

If H Xéea_ili?iver <dmax i:1’2’3""’NSR -1
Evaporation and Raining Process
End
Ok = Gy~

Max Iteration

After satisfying evaporation condition, the raining process must be applied:

X™® —LB+randx(UB-LB)

Stream



Processes of the WCA




Nature
Precipitation
Stream(s)

River(s)

Sea
Surface Runoff

Evaporation

Water cycle process

Water Cycle Algorithm

Initial Population
Individual(s) of population

Second best solution (a number of best
solution)

Best solution (optimum solution)

Moving streams to rivers, and rivers to
sea

Evaporation condition

Iteration



Flowchart of the WCA

Choose the initial Parameters

)

Generate Random Initial Population (initial streams, rivers and sea)
using Eqs. (2), (4) and (5)

!

| Calculate the cost of each raindrop by Eq. (3) I

l

| Determine the intensity of flow by Eq. (6) |

Streams flow to the rivers using Eq. (8)

¥

| Rivers flow to the sea using Eq. (9) |

I

< Does the stream have the lower function No

valuc than the corresponding river?

lYes

Exchange the positions of the stream with the
corresponding river

Docs the river have the lower function value No
than sca?

Yes

Exchange the positions of the river with the sea

»
v
< Evaporation Condition satisfied? >N

Yes

Create clouds and then start raining process by
Eqs. (11) and (12)

le

)

Decrease the value of the dmax by Eq. (10)

:

Checking the convergence criteria >

Yes

The Hydrologic Cycle

S
>
2>

Condensation

[207:
£ b Evaporation
B sk
B 3
Precipitationy | d
e ® bl »
e ") '. apotran
< > % Snowmelt

STt

Cat ' u

!{;’ ; N < ,\%
\ 4 R
&,’ Plant Uptake'j

blovs nbssks



e Setuser parameter of the WCA: N_pop, Ny, and Max_Iiteration

*  Determine the number of streams (individuals) which flow to the rivers and sea: WC A P seu d @) CO d e

N_ =Number of Rivers+ 1

_—
Sea

N,

Steamr NM B N.sr

e Create randomly initial population.

e Define the intensity of flow (How many streams flow to their comresponding rivers and
sea):

_rm{wfh;t ¥ Noppme) - H=L2 .. .N_

2 Cost;
=

while (r <~ Maximum Iteration) or (Stopping Condition)
for i=1: Population size (N_pop)
Stream flows to its comresponding rivers and sea:
.i';:im = *;a,m +ramd = Cx{.i'iw - .i'_;,m)
.i';:im = i";mm + remd x Cx{f;,—f;mm)
Calculate the objective function of the generated stream|
ifF_New Stream<F_river
River =New Stream:
if F_New Stream<F_Sea
Sea=New Stram:
endif
end if
River flows to its correspunding sea:
Xo o XL +randxCx (X, —X5.)
Calculate the objective function of the generated river
ifF_New River<F Sea
Sea=New_River;
end if

end for
fori=1:number of rivers (Ny)
if (distance (Seaand River) < Dye) or (Fand<0.1)
New streams are created:
X = LB+rand=(UB—LB)
end if
end for
Reduce the Dy
i =dy =
Max Jreration

end while
Postprocess results and visualization



How do you know If they are
converged?

e YOu don’t

e Metaheuristics are not a “black-box” optimizer for any
function

e You can gain confidence by running several
optimizations with different starting parameters,

different algorithm options, and different parameter
ranges.



Are long runs beneficial?!

S 4
I
>
o
8
= Progress in 2nd half ;
)]
)
)
=
= Progress in 15t half <
§
=
Time (number of generations)
* Answer:

- it depends how much you want the last bit of progress.
- it may be better to do more shorter runs.



Is It worth expending effort on smairt
Initialization?

F F: fithess after smart initialization

: T: time needed to reach level F after random initialization
| >
-

Best fitness in population

Time (number of generations)

* Answer : it depends:
- possibly, if good solutions/methods exist.
- care Is needed, see chapter on hybridization



Meta-heuristic Algorithms

® Classification of Metaheuristics

D N N NN

Nature-inspired vs. non-nature inspirec
Population-based vs. single point search
One vs. various neighborhood structures
Memory usage vs. memory-less methods




Meta-heuristic Algorithms

® Comparison with other algorithms

Population-based Generatin LIS
Metaheuristics P : Using Memory . J Neighbor
vs. single point search Initial Solution :
Solutions
GAs Population-based Memory less Random One neighbor
ACO Population Using memory to store Random n neighbor
& Single based amount of pheromones | / Local search solutions
SA Single based Memory less Random One neighbor
Short term (tabu lists), 1 neiahbor
TS Single based mid term and Local search J
solutions
long term memory
Population-based
HS algorithm Using memory Random One neighbor

(Harmony Memory)




Naturally inspired

Metaheuristic Diagram

Metaheuristics
Population
Evolutionary
algorithm
|rGenetic algorithrﬁ\: WC'?_‘ - §
< Particle swarrr1 =]
Genetic | optimization ) A
kprugramming , . — — -+
b o Evolution | [Ant colony c:phrnmatmﬂ
| Evolutionary strategy algorithms
programming — i
1 v m
— : B
Differential "Estimation of distributio = E
evolution ‘ algorithm 0,
b, ’ rr 3
(1]
.
| Scatter search 3
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Trajectory
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Thank you for your kind attentions




