Where would we use Optimization?

Engineering
Architecture
Nutrition
Electrical circuits
Economics
Transportation

Etc.



But al so é

6 Optimization is also applied in:

i Protein folding

i System identification
i Financial market forecasting (options pricing)

i Logistics (traveling salesman problem),
route planning, operations research

i Controller design

i Spacecraft trajectory planning


http://www.postech.ac.kr/life/pe/index2.html

Optimization popularity

Increasingly popular:

Increasing availability of numerical modeling techniques
Increasing availability of cheap computer power
Increased competition, global markets

Better and more powerful optimization technigues

Increasingly expensive production processes
(trial-and-error approach too expensive)

More engineers having optimization knowledge



Solving optimization problems

6 Optimization problems are typically solved using an
iterative algorithm:

Constants

Design
variables
X




Curse of dimensionality

Looks complicated €& why not
space, and take the best one?

Consider problem with n design variables
Sample each variable with m samples

Number of computations required: m"

Take 1 second per computation,
10 variables, 10 samples:
total time 317 years!




Parallel computing

O¢

Still, for large problems,
optimization requires lots
of computing power

Parallel computing

O«




Optimization in the design process

Optimization-based design process:

|dentify: Collect data to describe

1. Design variables j the system

2. Objective function !

3. Constraints Estimate initial design
v

A 4

Analyze the system

A 4

Check the constraints

'

Does the design satisfy
convergence criteria? L~ Done
v
Change the design
using an optimization
method




What makes a design
optimization problem interesting?

6 Good design optimization problems often show a
conflict of interest / contradicting requirements:

i Aircraft wing & F1 car: stiffness vs. weight

i Oll bottle: stiffness / buckling load vs. material usage

6 Otherwise the problem could be trivial!



A Standard Optimization Model

Optimization concerns the minimization or maximization of
functions:

AStandard Optimization Problem:
Objective function: Min or max f )

Subject to:

n (X) =0 1 4,...} Equality Constraints
J; (X) ¢o0 J 4,..m Inequality Constraints

XLk ¢ X ¢>{J K K E, I\|Side Constraints

where:

f (%)

IS the objective function, which measure and evaluate the performance of
a system. In a standard problem, we are minimizing the function. For
maximization problems, it is equivalent to minimization of T f(x).

IS a column vector of design variables, which can

affect the performance of the system. _
max f X)=min [-f (x)]



Example of an optimization problem

Objective Function:

| Nonlinear inequalities

Nonlinear equalities

min f (X) = %% %
Subject to:
2X° + X, (ID
5%°+3, 0—(
X 2% 2% 0

—

X +2X, X €2

Linear inequalities

-oX 2%, &

Linear equalities

Side Constraints

8X, +4x, =
0¢ x,%,,% (ISG/




Optimization Category

Single Vanable

Minimum

secking Dynamic
A Multiple Variables A

Random < > Static
OPTIMISATION

Function < 7 > Constrained
> Discrete ’

Unconstrained

Continuous

Tnal and Error
exclusive




Optimization classification

Single Variable Vs. Multiple Variables

W

6 If there is only one variable, the optimization is one-dimensional.

Dynamic Vs. Static

W

6 Dynamic optimization means that the output is a function of time, while static
means that the output is independent of time.

Discrete Vs. Continuous

W

6 Discrete variables have only a finite number of possible values, whereas
continuous variables have an infinite number of possible values.
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Try-and-error Vs. Function

Trial-and-error optimization refers to the process of adjusting variables that affect
the output without knowing much about the process that produces the output.

In contrast, a mathematical formula describes the objective function in function
optimization.

Experimentalists prefer the try-and-error, while theoreticians love the theoretical

and mathematical approach.
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Random Search Vs. Minimum seekers

Some algorithms try to minimize the cost by starting from an initial set of
variable values. These minimum seekers easily get stuck in local minima but
tend to be fast. They are the traditional optimization algorithms and are
generally based on calculus methods. Moving from one variable set to
another is based on some determinant sequence of steps.

On the other hand, random methods use some probabilistic calculations to
find variable sets. They tend to be slower but have greater success at finding
the global minimum.

Minimum Seeking Algorithms: Classic way

Random Search Algorithms: New way



(@4

(@]

O«

Constraint Vs. Unconstraint

Variables often have limits or constraints. Constrained optimization
Incorporates variable equalities and inequalities into the cost function.

Constraints can be hard (must be satisfied) or soft (is desirable to satisfy).

Example: In your course schedule a hard constraint is that no classes
overlap. A soft constraint is that no class be before 10 AM.

Constraints can be explicit (stated in the problem) or implicit (obvious to the
problem).



Single objective vs multi-objective

6 Minimize f(X) « Vector!
s.t..g(xX)¢0,h(x)=0

6 Input from designer required! Popular approach:
replace by weighted sum:

Fx)=a w f(x)
6 Optimum, clearly, depends on choice of weights

6 Par et o o pt nomther feasiloa poit exista that
has a smaller f; without having a larger f,0



Multi-objective problems (cont.)

6 Examples of multi-objective problems:

i Design of a structure for

A Minimal weight and

A Minimal stresses

i Design of reduction gear unit for = =~

A Minimal volume

A Maximal fatigue life

i Design of a truck for
A Minimal fuel consumption @ 80 km/h
A Minimal acceleration time for 0 7 40 km/h

A Minimal acceleration time for 40 7T 90 km/h
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Types of Solutions

A solution to an optimization problem specifies the values of the decision
variables, and therefore also the value of the objective function.

A feasible solution satisfies all constraints.

An optimal solution is feasible and provides the best objective function
value.

A near-optimal solution is feasible and provides a superior objective
function value, but not necessarily the best.

Near-optimal solution~=Local optimal solution



Simple Vs. Hard problem

Hard

A Many decision variables

A Discontinuous, combinatorial
A Multi modal

A Objective difficult to calculate
A Severely constraints

A Feasibility difficult to determine
A Multiple objectives

A Stochastic

Simple

A Few decision variables

A Differentiable

A Uni-modal

A Obijective easy to calculate
A No or light constraints

A Feasibility easy to determine
A Single objective

A deterministic



Structural optimization

6 Structural optimization = optimization techniques
applied to structures

6 Different categories:

i Sizing optimization
i Shape optimization

i Topology optimization




Sizing Optimization
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Shape optimization

Yamaha R1




Topology optimization

Bef_ore... After!




Topology optimization
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