
Where would we use Optimization?

● Engineering

● Architecture

● Nutrition

● Electrical circuits

● Economics

● Transportation

● Etc.

But also …

● Optimization is also applied in:

– Protein folding

– System identification

– Financial market forecasting (options pricing)

– Logistics (traveling salesman problem),

route planning, operations research

– Controller design

– Spacecraft trajectory planning

http://www.postech.ac.kr/life/pe/index2.html

Optimization popularity

● Increasing availability of numerical modeling techniques

● Increasing availability of cheap computer power

● Increased competition, global markets

● Better and more powerful optimization techniques

● Increasingly expensive production processes

(trial-and-error approach too expensive)

● More engineers having optimization knowledge

Increasingly popular:

Solving optimization problems

● Optimization problems are typically solved using an

iterative algorithm:

Model

Optimizer

Design

variables

Constants

x

Curse of dimensionality

Looks complicated … why not just sample the design

space, and take the best one?

● Consider problem with n design variables

● Sample each variable with m samples

● Number of computations required: mn

Take 1 second per computation,

10 variables, 10 samples:

total time 317 years!

Parallel computing

● Still, for large problems,

optimization requires lots

of computing power

● Parallel computing

Optimization in the design process

Conventional design process:

Collect data to describe

the system

Estimate initial design

Analyze the system

Check performance

criteria

Is design satisfactory?

Change design based

on experience /

heuristics / wild guesses

Done

Optimization-based design process:

Collect data to describe

the system

Estimate initial design

Analyze the system

Check the constraints

Does the design satisfy

convergence criteria?

Change the design

using an optimization

method

Done

Identify:

1. Design variables

2. Objective function

3. Constraints

What makes a design

optimization problem interesting?

● Good design optimization problems often show a

conflict of interest / contradicting requirements:

– Aircraft wing & F1 car: stiffness vs. weight

– Oil bottle: stiffness / buckling load vs. material usage

● Otherwise the problem could be trivial!

A Standard Optimization Model

Optimization concerns the minimization or maximization of

functions:

 Standard Optimization Problem:

min max ()or f x

  0 1,...,jg x j m 

  0 1,...,ih x i l 

1,...,L U

k k kx x x k N  

Equality Constraints
Subject to:

Inequality Constraints

Side Constraints

 f x
is the objective function, which measure and evaluate the performance of

a system. In a standard problem, we are minimizing the function. For

maximization problems, it is equivalent to minimization of –f(x).

where:

x is a column vector of design variables, which can

affect the performance of the system.

Objective function:

max () min [()]f x f x 

Example of an optimization problem

  1 2 3min f x x x x 

2

1 22 0x x 

1 2 3

1 2 3

2 2 0

2 2 72

x x x

x x x

   

  

1 2 30 , , 30x x x 

Linear inequalities

Side Constraints

Subject to:

2 3

1 25 3 0x x 

1 2

2 3

5 2 0

8 4 5

x x

x x

  

 

Linear equalities

Nonlinear equalities

Nonlinear inequalities

Objective Function:

Optimization Category

Optimization classification

Single Variable Vs. Multiple Variables

● If there is only one variable, the optimization is one-dimensional.

Dynamic Vs. Static

● Dynamic optimization means that the output is a function of time, while static

means that the output is independent of time.

Discrete Vs. Continuous

● Discrete variables have only a finite number of possible values, whereas

continuous variables have an infinite number of possible values.

Try-and-error Vs. Function

● Trial-and-error optimization refers to the process of adjusting variables that affect

the output without knowing much about the process that produces the output.

● In contrast, a mathematical formula describes the objective function in function

optimization.

● Experimentalists prefer the try-and-error, while theoreticians love the theoretical

and mathematical approach.

Random Search Vs. Minimum seekers

● Some algorithms try to minimize the cost by starting from an initial set of

variable values. These minimum seekers easily get stuck in local minima but

tend to be fast. They are the traditional optimization algorithms and are

generally based on calculus methods. Moving from one variable set to

another is based on some determinant sequence of steps.

● On the other hand, random methods use some probabilistic calculations to

find variable sets. They tend to be slower but have greater success at finding

the global minimum.

Minimum Seeking Algorithms: Classic way

Random Search Algorithms: New way

Constraint Vs. Unconstraint

● Variables often have limits or constraints. Constrained optimization

incorporates variable equalities and inequalities into the cost function.

● Constraints can be hard (must be satisfied) or soft (is desirable to satisfy).

Example: In your course schedule a hard constraint is that no classes

overlap. A soft constraint is that no class be before 10 AM.

● Constraints can be explicit (stated in the problem) or implicit (obvious to the

problem).

Single objective vs multi-objective

● Minimize f(x)

s.t.: g(x)  0, h(x) = 0

● Input from designer required! Popular approach:

replace by weighted sum:

Vector!

() ()i i

i

F w fx x

● Optimum, clearly, depends on choice of weights

● Pareto optimal point: “no other feasible point exists that

has a smaller fi without having a larger fj”

Multi-objective problems (cont.)

● Examples of multi-objective problems:

– Design of a structure for

 Minimal weight and

 Minimal stresses

– Design of reduction gear unit for

 Minimal volume

 Maximal fatigue life

– Design of a truck for

 Minimal fuel consumption @ 80 km/h

 Minimal acceleration time for 0 – 40 km/h

 Minimal acceleration time for 40 – 90 km/h

Types of Solutions

● A solution to an optimization problem specifies the values of the decision
variables, and therefore also the value of the objective function.

● A feasible solution satisfies all constraints.

● An optimal solution is feasible and provides the best objective function
value.

● A near-optimal solution is feasible and provides a superior objective
function value, but not necessarily the best.

● Near-optimal solution~=Local optimal solution

Simple Vs. Hard problem

Simple

• Few decision variables

• Differentiable

• Uni-modal

• Objective easy to calculate

• No or light constraints

• Feasibility easy to determine

• Single objective

• deterministic

Hard

• Many decision variables

• Discontinuous, combinatorial

• Multi modal

• Objective difficult to calculate

• Severely constraints

• Feasibility difficult to determine

• Multiple objectives

• Stochastic

Structural optimization

● Structural optimization = optimization techniques

applied to structures

● Different categories:

– Sizing optimization

– Shape optimization

– Topology optimization

t

E, n R

r

L

h

Sizing Optimization

Shape optimization

Yamaha R1

Topology optimization

Topology optimization

Practical Examples: Submarines

Practical Example: Airbus A380

● Wing stiffening ribs

of Airbus A380:

● Objective: reduce weight

● Constraints: stress, buckling

Leading

edge ribs

Airbus A380 example (cont.)

● Topology and shape optimization

Airbus A380 example (cont.)

● Topology optimization:

● Sizing / shape optimization:

Airbus A380 example (cont.)

● Result: 500 kg weight savings!

Other examples

● Jaguar F1 FRC front wing:

reduce weight

constraints on

max. displacements

5% weight saved

Other examples (cont.)

● Design optimization of packaging products

● Objective: minimize

material used

● Constraints:

stress, buckling

● Result: 20% saved

http://www.tudelft.nl/

Structural optimization examples

● Typical objective function: weight

● Typical constraint: maximum stress, maximum

displacement

)(

)(

0x

x

W

W
f  Note the scaling!

01
)(max 

allowed

g


 x
0)(max  allowedg  x

Scaled vs. Unscaled

Aspirin pill design

● Proper bounds are necessary to avoid unrealistic

solutions:

– Example: aspirin pill design

Objective: minimize dissolving time

= maximize surface area

(fixed volume)

1

22

2

2

,





hr

rhr
hr





s.t.

maxr
h

Aspirin pill design (cont.)

● Volume equality constraint can be substituted, yielding:

r
r

r
h

r

2
2

1 2

2
 


max

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7 8 9 10

r

f

Using Optimization in Mathematics

Einstein’s advice

“Everything

should be

made as

simple as

possible, but

not simpler”

● Model simplification is important for optimization!

What are the metaheuristics?

Metaheuristics

● Computational methods

● Iteratively improve

● Inspired by nature, real life events, etc

● No assumption of problem being solved

● Derivative free method

Rule 1: Collision Avoidance

Avoid Collision with neighboring birds

Rule 2: Velocity Matching

Match the velocity of neighboring birds

Rule 3: Flock (Swarm) Centering

Stay near neighboring birds

Ideal Optimizer

An Ideal Optimization Method

1. Guarantee finding global optimum point

2. No need any initial or user parameters

3. Fast convergence

4. Simple concept (simple programing)

5. High solution stability

6. Great solution quality

7. Independent to the nature of a given problem

8. Independent to the number of D.Vs

Simultaneously

When to Use Metaheuristic algorithms?!

● When space to be searched is large.

● When the “best” solution is not necessarily required.

● Approach to solving a problem not well-understood.

● Problems with many parameters that need to be simultaneously optimized.

● Problems that are difficult to describe mathematically.

Evolutionary Algorithms (EAs) as problem solver:

Goldberg’s 1989 view

Scale of “all” problems

P
e

rf
o

rm
a

n
c
e

 o
f
m

e
th

o
d

s
 o

n
 p

ro
b

le
m

s

Random search

Special, problem tailored method

Evolutionary algorithm

Scale of “all” problems

P
e

rf
o

rm
a

n
c
e

 o
f
m

e
th

o
d

s
 o

n
 p

ro
b

le
m

s

Michalewicz’ 1996 view

EA 1

EA 2

EA 3

EA 4

Two Important Characteristics of Metaheuristics

 Diversification – makes sure the algorithm explores the search

space globally

 Intensification – intends to search locally and more intensively

 A fine balance between these two components is very important

to the overall efficiency and performance of an algorithm

 Furthermore, needs Survival of the Fittest

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

a
lu

e

Variable set

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

a
lu

e

Variable set

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

a
lu

e

Variable set

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

a
lu

e

Variable set

Searching Space Final Solution Using Algorithm 1

Final Solution Using Algorithm 2 Final Solution Using Algorithm 3

Good Exploration Capability

Bad Exploitation Capability

Bad Exploration Capability

Good Exploitation Capability

Good Exploration Capability

Good Exploitation Capability

Objective : Maximization of Function Value

Heriot-Watt Universtiy

http://www.streamsim.com/sites/default/files/explorationvsexploitation.png

Exploration vs. Exploitation

Miner Conqueror

Adventurer

Meta-heuristic Algorithms

Holland (1975)

Genetic
Algorithm

Glover (1977)

Tabu Search

Kirkpatrick et
al. (1983)

Simulated
Annealing

Dorigo (1992)

Ant Colony
Optimization

Kennedy and
Eberhart

(1995)

Particle
Swarm

Optimization

Storn and
Price (1996)

Differential
Evolution

Geem and Kim
(2001)

Harmony
Search

1970s 2001

http://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=8n6Gqz_ya0whaM&tbnid=QQrBWjW0gRc18M:&ved=0CAUQjRw&url=http://www.quickiwiki.com/en/Ant_colony_optimization&ei=LleMUoTMI-XOiAeX_YHYBQ&bvm=bv.56753253,d.aGc&psig=AFQjCNHf8FlHpVYzuN68fhLM5ahfBtGEtA&ust=1385015345222282

Meta-heuristic Algorithms

Geem and Kim
(2001)

Harmony
Search

Nakrani and
Tovey (2004)

Honeybee
Algorithm

Yang (2007)

Firefly
Algorithm

Yang and Deb
(2008) Cuckoo

Search

Yang (2010)
Bat Algorithm

Eskandar et al.
(2012)

Water Cycle
Algorithm

Sadollah et al.
(2012)

Mine Blast
Algorithm

2000s 2013

Water cycle algorithm

Water Cycle Algorithm: Basic Concept

Concepts: Water cycle process (Hydrologic cycle)

Sea

Stream

River

Order of streams

Sea

Steps of Water Cycle Process

1. Precipitation

2. Surface Runoff

3. Infiltration

4. Transpiration

5. Evaporation and Condensation

Schematic view of Water Cycle Process

Water Cycle

(hydrologic cycle)

Water Cycle Algorithm: Formulations

1 2 3
os () (, , ,...,) 1,2,3,...,

Ni iC t f Stream f x x x x i N  

1
SR

Sea

N Number of Rivers 

Streams Pop SRN N N 

1 1 1 11

1 2 3

2 2 2 2 2

1 2 3

3

1 2 3
Streams Streams Streams Streams

Streams

N

N

N N N N

N
N

Stream
x x x x

Stream
x x x x

Population of Streams Stream

x x x x
Stream

 
  
  
   
  
  
    

 

1

1 1 1 12

1 2 3

3 2 2 2 2

1 2 3

4

5

1 2 3
6

pop pop pop pop

pop

N

N

N N N N

N

N

Sea

River

River
x x x x

River
x x x x

Total Population Stream

Stream
x x x x

Stream

Stream

 
 
 
 

  
  
  

    
  
    

 
 
 
  

Water Cycle Algorithm: Formulations

In order to designate streams to rivers and sea which depends on the intensity of

the flow:

New positions for streams and rivers may be given as:

1

{ } , 1,2,...,
SR

n
n Streams SRN

i

i

Cost
NS round N n N

Cost


  



1 ()i i i i

River River Sea RiverX X rand C X X     

1 ()i i i i

Stream Stream River StreamX X rand C X X     

1 ()i i i i

Stream Stream Sea StreamX X rand C X X     

1 2C

WCA: Evaporation Condition

After satisfying evaporation condition, the raining process must be applied:

max 1,2,3,..., 1i i

Sea River SRIf X X d i N

Evaporation and Raining Process

End

   

1 max
max max

Max

i
i i d

d d
Iteration

  

()new

StreamX LB rand UB LB   

Processes of the WCA

Analogy

Nature Water Cycle Algorithm

Precipitation Initial Population

Stream(s) Individual(s) of population

River(s)
Second best solution (a number of best

solution)

Sea Best solution (optimum solution)

Surface Runoff
Moving streams to rivers, and rivers to

sea

Evaporation Evaporation condition

Water cycle process Iteration

Flowchart of the WCA

WCA: Pseudo Code

How do you know if they are

converged?

● You don’t

● Metaheuristics are not a “black-box” optimizer for any

function

● You can gain confidence by running several

optimizations with different starting parameters,

different algorithm options, and different parameter

ranges.

B
e
s
t
fi
tn

e
s
s
 i
n

 p
o

p
u
la

ti
o
n

Time (number of generations)

Progress in 1st half

Progress in 2nd half

Are long runs beneficial?!

• Answer:

- it depends how much you want the last bit of progress.

- it may be better to do more shorter runs.

T: time needed to reach level F after random initialization

T
Time (number of generations)

B
e

s
t
fi
tn

e
s
s
 i
n

 p
o
p

u
la

ti
o

n

F: fitness after smart initializationF

Is it worth expending effort on smart

initialization?

• Answer : it depends:

- possibly, if good solutions/methods exist.

- care is needed, see chapter on hybridization

Meta-heuristic Algorithms

 Nature-inspired vs. non-nature inspired

 Population-based vs. single point search

 One vs. various neighborhood structures

 Memory usage vs. memory-less methods

Meta-heuristic Algorithms

Metaheuristics
Population-based

vs. single point search
Using Memory

Generating

Initial Solution

Number of

Neighbor

Solutions

GAs Population-based Memory less Random One neighbor

ACO
Population

& Single based

Using memory to store

amount of pheromones

Random

/ Local search

n neighbor

solutions

SA Single based Memory less Random One neighbor

TS Single based

Short term (tabu lists),

mid term and

long term memory

Local search
n neighbor

solutions

HS

Population-based

algorithm

(Harmony Memory)

Using memory Random One neighbor

Metaheuristic Diagram

WCA

HS

Thank you for your kind attentions

